59 research outputs found

    Comparative transcriptome sequencing of germline and somatic tissues of the Ascaris suum gonad

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ascaris suum </it>(large roundworm of pigs) is a parasitic nematode that causes substantial losses to the meat industry. This nematode is suitable for biochemical studies because, unlike <it>C. elegans</it>, homogeneous tissue samples can be obtained by dissection. It has large sperm, produced in great numbers that permit biochemical studies of sperm motility. Widespread study of <it>A. suum </it>would be facilitated by more comprehensive genome resources and, to this end, we have produced a gonad transcriptome of <it>A. suum</it>.</p> <p>Results</p> <p>Two 454 pyrosequencing runs generated 572,982 and 588,651 reads for germline (TES) and somatic (VAS) tissues of the <it>A. suum </it>gonad, respectively. 86% of the high-quality (HQ) reads were assembled into 9,955 contigs and 69,791 HQ reads remained as singletons. 2.4 million bp of unique sequences were obtained with a coverage that reached 16.1-fold. 4,877 contigs and 14,339 singletons were annotated according to the <it>C. elegans </it>protein and the Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. Comparison of TES and VAS transcriptomes demonstrated that genes participating in DNA replication, RNA transcription and ubiquitin-proteasome pathways are expressed at significantly higher levels in TES tissues than in VAS tissues. Comparison of the <it>A. suum </it>TES transcriptome with the <it>C. elegans </it>microarray dataset identified 165 <it>A. suum </it>germline-enriched genes (83% are spermatogenesis-enriched). Many of these genes encode serine/threonine kinases and phosphatases (KPs) as well as tyrosine KPs. Immunoblot analysis further suggested a critical role of phosphorylation in both testis development and spermatogenesis. A total of 2,681 <it>A. suum </it>genes were identified to have associated RNAi phenotypes in <it>C. elegans</it>, the majority of which display embryonic lethality, slow growth, larval arrest or sterility.</p> <p>Conclusions</p> <p>Using deep sequencing technology, this study has produced a gonad transcriptome of <it>A. suum</it>. By comparison with <it>C. elegans </it>datasets, we identified sets of genes associated with spermatogenesis and gonad development in <it>A. suum</it>. The newly identified genes encoding KPs may help determine signaling pathways that operate during spermatogenesis. A large portion of <it>A. suum </it>gonadal genes have related RNAi phenotypes in <it>C. elegans </it>and, thus, might be RNAi targets for parasite control.</p

    Rhesus Macaques (Macaca mulatta) Are Natural Hosts of Specific Staphylococcus aureus Lineages

    Get PDF
    Currently, there is no animal model known that mimics natural nasal colonization by Staphylococcus aureus in humans. We investigated whether rhesus macaques are natural nasal carriers of S. aureus. Nasal swabs were taken from 731 macaques. S. aureus isolates were typed by pulsed-field gel electrophoresis (PFGE), spa repeat sequencing and multi-locus sequence typing (MLST), and compared with human strains. Furthermore, the isolates were characterized by several PCRs. Thirty-nine percent of 731 macaques were positive for S. aureus. In general, the macaque S. aureus isolates differed from human strains as they formed separate PFGE clusters, 50% of the isolates were untypeable by agr genotyping, 17 new spa types were identified, which all belonged to new sequence types (STs). Furthermore, 66% of macaque isolates were negative for all superantigen genes. To determine S. aureus nasal colonization, three nasal swabs from 48 duo-housed macaques were taken during a 5 month period. In addition, sera were analyzed for immunoglobulin G and A levels directed against 40 staphylococcal proteins using a bead-based flow cytometry technique. Nineteen percent of the animals were negative for S. aureus, and 17% were three times positive. S. aureus strains were easily exchanged between macaques. The antibody response was less pronounced in macaques compared to humans, and nasal carrier status was not associated with differences in serum anti-staphylococcal antibody levels. In conclusion, rhesus macaques are natural hosts of S. aureus, carrying host-specific lineages. Our data indicate that rhesus macaques are useful as an autologous model for studying S. aureus nasal colonization and infection prevention

    Inhibition of Toxic Shock by Human Monoclonal Antibodies against Staphylococcal Enterotoxin B

    Get PDF
    BACKGROUND: Staphylococcus aureus is implicated in many opportunistic bacterial infections around the world. Rising antibiotic resistance and few alternative methods of treatment are just two looming problems associated with clinical management of S. aureus. Among numerous virulence factors produced by S. aureus, staphylococcal enterotoxin (SE) B is a secreted protein that binds T-cell receptor and major histocompatibility complex class II, potentially causing toxic shock mediated by pathological activation of T cells. Recombinant monoclonal antibodies that target SEB and block receptor interactions can be of therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory and biophysical properties of ten human monoclonal antibodies, isolated from a recombinant library by panning against SEB vaccine (STEBVax), were examined as bivalent Fabs and native full-length IgG (Mab). The best performing Fabs had binding affinities equal to polyclonal IgG, low nanomolar IC(50)s against SEB in cell culture assays, and protected mice from SEB-induced toxic shock. The orthologous staphylococcal proteins, SEC1 and SEC2, as well as streptococcal pyrogenic exotoxin C were recognized by several Fabs. Four Fabs against SEB, with the lowest IC(50)s, were converted into native full-length Mabs. Although SEB-binding kinetics were identical between each Fab and respective Mab, a 250-fold greater inhibition of SEB-induced T-cell activation was observed with two Mabs. CONCLUSIONS/SIGNIFICANCE: Results suggest that these human monoclonal antibodies possess high affinity, target specificity, and toxin neutralization qualities essential for any therapeutic agent

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems
    • …
    corecore